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This study enables the use of very high-order finite-difference schemes for the so-
lution of conservation laws on stretched, curvilinear, and deforming meshes. To illus-
trate these procedures, we focus on up to 6th-order Pade-type spatial discretizations
coupled with up to 10th-order low-pass filters. These are combined with explicit and
implicit time integration methods to examine wave propagation and wall-bounded
flows described by the Navier—Stokes equations. It is shown that without the incor-
poration of the filter, application of the high-order compact scheme to nonsmooth
meshes results in spurious oscillations which inhibit their applicability. Inclusion of
the discriminating low-pass high-order filter restores the advantages of high-order
approach even in the presence of large grid discontinuities. When three-dimensional
curvilinear meshes are employed, the use of standard metric evaluation procedures
significantly degrades accuracy since freestream preservation is violated. To over-
come this problem, a simple technique is adopted which ensures metric cancellation
and thus ensures freestream preservation even on highly distorted curvilinear meshes.
For dynamically deforming grids, an effective numerical treatment is described to
evaluate expressions containing the time-varying transformation metrics. With these
techniques, metric cancellation is guaranteed regardless of the manner in which grid
speeds are defined. The efficacy of the new procedures is demonstrated by solving
several model problems as well as by application to flow past a rapidly pitching
airfoil and past a flexible panel.  © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Despite significant progress in computational sciences, challenges persist in the accurate
numerical simulation of a broad spectrum of dynamic, multiphysics phenomena. These
challenging areas include the direct-numerical and large-eddy simulation of turbulence,
aeroacoustics, fluid/structure interactions, and electromagnetics. One approach to reducing
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the severe computational requirements of standard low-order simulations is to employ
higher-order formulations [1-3].

In the hierarchy of high-order methods, compact schemes represent an attractive choice
for reducing dispersion and anisotropy errors. This is primarily due to their spectral-like
resolution [2]. An additional advantage accrues from their ease of extension to multiple
disciplines. In the context of fluid dynamics, these schemes have typically been used to
examine flow fields on simple domains, which can be discretized by static Cartesian meshes
(e.g.,Refs. [2—4]). Calculations on practical geometries, however, usually require curvilinear
and, in some cases, time-varying meshes of limited smoothness. In these cases, the advantage
of high-order compact schemes remains to be characterized. It is clear that careful analysis
of these issues is essential prior to the routine application of compact schemes to practical
simulations. We focus therefore on the following aspects:

e Impact of mesh quality: Body-fitted grids for complex configurations contain non-
smooth features such as slope discontinuities, skewness, and stretching. The impact of
these factors on scheme performance can be significant. It has been shown that the stan-
dard explicit second-order scheme incurs large error at locations where the mesh spacing
changes suddenly [5]. Consequently, it is natural to inquire whether the spatially implicit
character of compact-difference formulas accentuates this effect to the point that advantages
over cheaper lower-order schemes is lost. The question is addressed by considering meshes
with sudden discontinuities in spacing and rapid sustained metric variation. In these cases,
we demonstrate the crucial role played by the filtering technique, previously described in
Refs. [2, 6, 7], in enforcing stability while retaining the absolute accuracy advantages over
lower-order methods.

e Freestream preservation: Finite-difference procedures for solving the governing equa-
tions in strong conservation form require special treatment to preserve the freestream in 3-D
curvilinear meshes. For lower-order schemes, this aspect has been investigated extensively
in Refs. [8]-[10] while for higher-order schemes in two-dimensional situations, the issue
has been examined in Ref. [6]. It is demonstrated later that in contrast to 2-D situations,
straightforward methods of computing higher-order metrics in 3-D can cause unacceptably
large errors even on relatively benign but curvilinear meshes. To alleviate this difficulty, this
work adopts and validates metric evaluation techniques to guarantee freestream preservation
with higher-order algorithms.

e Application to moving and deforming meshes: Another area where high-order compact
solvers have not been employed or systematically evaluated is in the context of simulations
requiring dynamic (or moving) meshes. In this case also, the requirement that the geomet-
ric conservation law be satisfied mandates the use of carefully designed metric evaluation
techniques. A simple yet powerful procedure is developed for both spatial and time met-
ric terms to ensure that the higher-order approach retains its advantages over lower-order
schemes.

Details of the governing equations are given in Section 2. The numerical procedure
comprises two main components: the spatial discretization and the higher-order low-pass
filter. Both are described together with the explicit and implicit time-integration methods in
Section 3. The impact of mesh quality on the performance of higher-order discretizations is
examined in Section 4.1. The techniques required to ensure freestream preservation in static
three-dimensional curvilinear meshes are developed and demonstrated in Section 4.2. The
treatment of moving mesh metric evaluation and enforcement of geometric conservation
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law are presented in Section 4.3. Finally, two applications are presented, the first addressing
dynamic stall over a pitching airfoil (Section 4.4) and the second simulating fluttering of a
flexible panel (Section 4.5).

2. GOVERNING EQUATIONS

In order to develop a procedure suitable for nonlinear fluid dynamic, aeroacoustic, and
aeroelastic applications over complex configurations, the full Navier—Stokes equations are
selected and are cast in strong conservative form after introducing a general time-dependent
curvilinear coordinate transformation (x, y, z,t) — (&, 1, ¢, t) [8, 11, 12]. In vector nota-
tion, and in terms of nondimensional variables, these equations are

a(z?) aF 96  9H 1[aﬁv 3G, aﬁv} 0

at ag+ +a; Re| 98 an ' oc

Here U = {p, pu, pv, pw, pE} denotes the solution vector and J = d(§,n, ¢, 7)/9(x, y,
z, t) is the transformation Jacobian. The inviscid fluxes F , G and H are
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Here, £ = J~'9&/9x with similar definitions for the other metric quantities. The viscous
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fluxes, F,, G,, and H, (which do not involve the time metrics) can be found, for instance,
in Ref. [13]. In the expressions above, u, v, w are the Cartesian velocity components, p the
density, p the pressure, and 7 the temperature. The perfect gas relationship p = pT/y M2
is also assumed. All flow variables have been normalized by their respective freestream
values except for pressure, which has been nondimensionalized by pooZ,.

In deriving the strong-conservation form of the flow equations, the following metric
identities have been implicitly invoked,

I = E)e + (g + (G =0 ©9)
L= E)e+ (y)y+ () =0 (10)
I= () + (g + () =0 (11)
Iy = (1D + Ee + (h)y + G =0, (12)

where again, subscripts denote partial derivatives. The first three identities constitute a dif-
ferential statement of surface conservation for a closed cell. The last metric identity (I4)
expresses volume conservation and is referred to in the literature as the geometric conserva-
tion law (GCL) [10]. In a finite-difference discretization, these identities must be satisfied
numerically in order to ensure freestream preservation. For time-invariant coordinate trans-
formations (i.e., nonmoving meshes), only the first three identities are applicable.

3. NUMERICAL METHOD

3.1. Spatial Discretization

A finite-difference approach is employed to discretize the above equations. This choice is
motivated by the relative ease of formal extension to higher-order accuracy. For any scalar
pointwise discrete quantity, ¢, such as a metric, flux component or flow variable, the spatial
derivative ¢’ is obtained in the transformed plane by solving the tridiagonal system

Git2 — hi2 a¢i+l — $i-

ad_ + ¢ +ag; , =b TAE + A

(13)

where «, a, and b determine the spatial properties of the algorithm. The formula encom-
passes a family of schemes ranging in accuracy from the standard three-point, second-
order explicit method (E2) to the compact five-point, sixth-order algorithm (C6) [2]. The
coefficients for the schemes considered are presented in Table I. A discussion of the

TABLE 1
Schemes with Five-Point Stencil (Eq. (13))

Scheme o a b OA
E2 0 1 0 2
4 —1
E4 0 - — 4
3 3
Cc4 1 § 0 4
4 2
1 14 1
co6 = — - 6
3 9 9

Note. OA, order of Accuracy.
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TABLE II
Coefficients for Boundary Formulas at Point 1 (Eq. (14))

Scheme o a b, ¢ d, e
_25 4 -1
E4 0 — 4 -3 _ _
12 3 4

—17 3 3 —1
Cc4 3 — — — — 0

6 2 2 6

accuracy of Eq. (13) in the physical plane has been provided previously in Ref. [7] for
stretched 1-D meshes.

At boundary points 1, 2, IL — 1, and I L, higher-order one-sided formulas are utilized
which retain the tridiagonal form of the interior scheme. For example, at points 1 and 2 the
general formulas are

. , o
Point1 ¢| +a1¢; = A—E(md’l +b1¢y + 193 +didps + e1Ps)
(14)

Point2  wy¢; + ¢ + a2y = ALE(azqh + bao + 203 + drps + e20hs).
The coefficients for varying orders of accuracy can be obtained through the Taylor series
term-matching procedure. Coefficients of schemes employed in this paper are presented in
Tables II and III, respectively, and a complete listing is provided in Ref. [14].

The derivatives of the inviscid fluxes are obtained by first forming the fluxes at the nodes
and subsequently differentiating each component with the above formulas. For the compu-
tation of the viscous terms, the primitive variables, u, v, w, T, are first differentiated to form
the components of the stress tensor and the heat flux vector at each node. The viscous flux
derivatives are then computed by a second application of the same scheme. This approach
was previously shown [6] to provide sufficient accuracy and stability when the scheme is
augmented with the filtering procedure described below. We note that more compact high-
order midpoint formulas presented in Ref. [14] provide an alternative technique. However, it
is more expensive to implement due to the additional high-order interpolation step required.

3.2. Filtering Scheme

Compact-difference discretizations, like other centered schemes, are nondissipative and
are therefore susceptible to numerical instabilities due to the growth of high-frequency
modes. These difficulties originate mainly from mesh nonuniformity, boundary conditions
(see e.g., [15]) and nonlinear flow features. In order to extend the present solver to practical

TABLE IIT
Coefficients for Boundary Formulas at Point 2 (Eq. (14))

Scheme o a, b, Cy d, e
E4 0 -1 - 3 -t s
4 2 2 12
c4 ! -3 0 3 0
4 4 4
cs 3 —19 -5 6 —1 1
14 28 42 7 14 84
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TABLE IV

Coefficients for Filter Formula (Eq. (15)) at Interior Points [7]

Scheme ag a a a ay as OA
1 1
F2 2 + oy 2 + oy 0 0 0 0 2
5 3oy 1 -1 ay
F4 -4+ — - — 4+ — 0 0 0 4
8 4 2T st
11 Say 15  17ay -3 3oy 1 o
F6 — 4+ — —+ — — 4+ — — - = 0 0 6
16 + 8 32 + 16 16 + 8 32 16
78 93 470 7+ 18y =7+ 4oy 1 o —_1+oz_, 0 8
128 16 32 16 8 128 64
FlIo 1934+ 1260, 10543020,  15(—=1420;) 451 —=20y)  S(=1420) 1—20a; 10
256 256 64 512 256 512

Note. ay is a free parameter in the range 0 < |as| < 0.5.

simulations, at least those not involving strong stationary shocks, while retaining the im-
proved accuracy of the spatial compact discretization, a high-order implicit filtering tech-
nique [6, 7] is incorporated.
If a component of the solution vector is denoted by ¢, filtered values ¢ are obtained by
solving the tridiagonal system
N

N N N a
apdir+di+apdin=) > Pitn + Gin).

n=0

(15)

Equation (15) is based on templates proposed in Refs. [2, 16] and with proper choice of
coefficients, provides a 2Nth-order formula on a 2N + 1 point stencil. The N + 1 coeffi-
cients, ap, ay, . . . ay, are derived in terms of oy with Taylor- and Fourier-series analyses and
for completeness are presented in Table IV. References [6, 7, 17] contain spectral responses
of these filters. The adjustable parameter o satisfies the inequality —0.5 < ay < 0.5, with
higher values of a ;s corresponding to a less dissipative filter. Extensive numerical experi-
ence suggests that regardless of time-integration scheme, values of « ¢ between 0.3 and 0.5
are appropriate. However, in extremely poor quality meshes, a lower value, ay ~ 0.1 may
be required. The filter is typically chosen to be at least two orders of accuracy higher than
the difference scheme.

Special formulas are required at near boundary points due to the relatively large stencil
of the filter. Values at the end points 1 and /L are not filtered while at other near boundary
points, where Eq. (15) cannot be applied, two approaches are suitable. In the first method,
proposed in Ref. [6], the order of accuracy is reduced upon approaching the boundary to a
level for which a centered scheme is available. Absolute accuracy is retained by optimizing
the value of o ;. This approach is particularly suited to problems where the mesh is highly
refined near the boundary. The second method, introduced in Ref. [17], employs higher-
order one-sided formulas, which again retain the tridiagonal form of the scheme. In this
effort, the latter approach is followed.

At a near-boundary point, i, a filter formula is given by

1
apdii+ditapdion =) anipn i€f2,....5)

n=1
ie{IL—4,..., 1L —1).

10
apdion+¢i+apdion =Y arnibiLn (16)
n=0
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TABLE V
Coefficients for Sixth-Order Boundary Filter Formula at Point 3 (Eq. (16))

OA as ax3 ass as3 as3 Qs,3 as

6 1 i ay 3 n Bay 49 15ay 5 n 3ay 15 15ay 3 3oy 1 o
64 32 32 16 64 32 16 8 64 32 32 16 64 32

This choice retains the tridiagonal form of the filter, and oy remains as the only free
parameter. Tables V and VI list coefficients for the higher-order one-sided left-boundary
filter formulas employed in the present computations at points 2 and 3. The right-boundary
formulas are obtained by noting a;r_,; = any1,70—i+1 fori e {IL —4,..., 1L —1}. An
extensive listing of boundary filter coefficients is provided in [14, 17].

The filter is applied to the conserved variable and sequentially in each coordinate direc-
tion. Although the frequency of application can be varied, for the results below, the solu-
tion is filtered once after the final stage of the explicit Runge—Kutta method or after each
sub-iteration of the implicit algorithm. Where pertinent, the interior filter formula utilized is
denoted by appending its designation to that of the scheme. For example, C6F10°# denotes
the sixth-order compact method combined with a tenth-order filter (ay = 0.4).

3.3. Time Integration

Two different time-integration approaches are examined. For wave propagation appli-
cations, the equations are integrated in time with the classical fourth-order four-stage
Runge—Kutta method (RK4). With R denoting the residual, the governing equation is

0U _ o _,(F  0G 0H 1 TaF, 0G,  9H,
a A an ac

¥+an+a; Re

] + ﬁ(l/f)r). (17)

The classical four-stage method, incorporated in the low storage form of Ref. [18], integrates
from time # (step n) to ty + At (step n + 1) through the operations

ko = AtR(Uy) ki = AtR(U,)
ky = AtR(U,) k3 = AtR(U3) (18)

3 Lo

TABLE VI
Coefficients for Boundary Filter Formulas at Point 2 (Eq. (16))

OA arn axn asn (&%) Asn (&%) arn
1 Toy 3 ay 3 ay 1 oy 1 ay
4 — + — -+ = -+ — ——+ = — - = 0 0
16 + 8 4 + 2 8 + 4 4 + 2 16 8
1 3lay 29 3ay 15 17cy 5 " Say 15 15y 3 3oty 1 of
64 32 32 16 64 32 16 8 64 32 32 16 64 32
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where Ug = U(€,1,¢,7), Uy = Uy +ko/2, Us = Uy + ki /2, Us = U, + ko. The RK4
method is employed in the present work only for cases in which the grid coordinates are
known as a function of time. In this situation, and for simplicity, the spatial metrics and grid
speeds are set to their n + 1 values.

For problems which demand the use of extremely fine resolution for example, in wall-
bounded viscous flows, the stability constraint of the explicit time-marching scheme is found
to render the approach too restrictive and inefficient. Therefore, the implicit, approximately-
factored method of Beam and Warming [19] is also incorporated and augmented through
the use of Newton-like subiterations in order to achieve second-order time accuracy. In delta
form, the scheme may be written as

[J—”“ +¢'Ats? <8Fp ~ L 8F§)]]p+l

aU  Re yU
, aG? 1 aG?
x| 771" 4 ’Ar5<2><f—— f)}ﬂ’”
[ ¢ T\ U Re jU
, 0H? 1 0H? -
x| 77" 4 'Ara<2>(f—— J’)]AU
[ AT aU  Re U
‘ (1 UP — (1 +2¢)U" + U -
Z_MT[J_I ' (1+¢) (A+ PU" + ¢ .
T

A T vy 1 N T
+85<FP—R—6F5)+6,,<G”—R—6G£’)+5;<HP—R_6H$7>}’ (19)

where
(20)

¢ =0 and ¢ = 1/2 yield the Euler-implicit and three-point backward schemes, respec-
tively. For the first subiteration, p = 1, v’ =0 n, andas p — oo, U? — U"*'. The spatial
derivatives in the implicit operators are represented using standard second-order centered
approximations whereas high-order discretizations are employed for the residual. Although
not shown in Eq. (19), nonlinear artificial dissipation terms are appended to the implicit
operator (only) to enhance stability. These terms, taken from [20], include both second-
and fourth-order dissipation operators scaled by the spectral radius. In addition, for im-
proved efficiency, the approximately factored scheme is recast in diagonalized form [21].
The fourth-order implicit damping then gives rise to a scalar pentadiagonal system. Er-
rors due to linearization, diagonalization, and explicit boundary condition implementation
are eliminated through the use of subiterations. This also eliminates the impact of the im-
plicit damping coefficients on the final solution. Thus, these coefficients can be chosen
exclusively from stability considerations. Typically, three subiterations are applied per time
step.
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4. RESULTS

4.1. Mesh Quality Issues

Mesh nonuniformities are a major source of error in finite-difference formulations.
In Ref. [6], the accuracy of compact-difference-based schemes was investigated on 2-D
curvilinear discretizations. Although the grids were highly skewed and stretched, they
were nevertheless smoothly generated. In some practical situations, for example, where
a surface slope exhibits a discontinuity, the mesh spacing can vary in a sudden man-
ner. The effect of such grid distortions on accuracy and stability of compact-difference
schemes, complemented with the higher-order low-pass filter, is now investigated with
the goal of establishing procedures to retain the superior performance of higher-order
discretizations.

4.1.1. Effect of Localized Mesh-Spacing Discontinuities

The impact of localized jumps in mesh spacing on the performance of the high-order
discretizations is examined first. A problem suitable for examining the issues involved in a
controlled setting is that consisting of a vortex convecting in an otherwise uniform inviscid
subsonic flow [6, 22].

The initial flow condition is imposed by prescribing a vortex, centered about the location
(x¢, yc), and satisfying the relations [22]

C(y—ye)
u=1- % exp(—r2/2)
C(x — x.)
V= exp(—r?/2)
pC?
P =P =57 exp(—r?)
s (= x)P 4 (= ye)?
re= ,
R2

where u, v, p, and R denote the Cartesian velocity components, static pressure, and vor-
tex core radius, respectively. The nondimensional vortex strength parameter C/(UxR)
was chosen to be 0.02 and the freestream Mach number M, was set to 0.1. The relation
for pressure was obtained by integration of dp/dr = puﬁ /r about the vortex center. The
density was assumed constant, which is suitable for the effectively incompressible flow
considered.

The computational grid, spanning the domain —8 < x < §; —8 < y < 8, is shown in
Fig. la. Abrupt changes are imposed in the streamwise spatial distribution at x = —4 (§;)
and x = 4 (S;). At location S}, the mesh spacing is suddenly halved from Ax, = 0.4 to
Ax; = 0.2. Conversely, at S, the mesh is abruptly coarsened back to Ax;. Periodic bound-
ary conditions are applied in both coordinate directions. The grid is uniform in y with
Ay = Ax;. It should be noted that no special treatment is invoked at stations Sj, >, and
that the flow is computed in a single domain using a general coordinate transformation. At
t = 0, the vortex is centered at x = 0 (Fig. 1b). The computation is then carried out until
t = 16 at which time the vortex has returned to its initial location following the passage
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FIG. 1. Performance of compact schemes on a mesh with sudden jumps in grid spacing.

through a sudden mesh coarsening (S,) and an abrupt grid refinement (S;). Figures 1c
and 1d compare vorticity magnitude contours obtained with E2 and C6, both with filter
F10%% to the exact solution (Fig. 1b). The swirl velocity along the horizontal centerline
is plotted in Fig. le. It can be seen that the compact scheme combined with the high-order
implicit filter retains its superior accuracy despite the localized, high grid stretching. The
importance of the filter in suppressing spurious grid-induced oscillations is highlighted
by recomputing the same case without the use of a filter. As the last curve in Fig. le
indicates, the numerical solution develops undesirable high-frequency spatial oscillations
which grow unbounded and which are not observed in the filtered results. This behavior
is in qualitative agreement with the analysis of Vichnevetsky [5] for the propagation of
finite-difference solutions to the one-dimensional advection equation in the presence of
localized grid coarsening/refinement. As shown in Ref. [5], passage of a smooth func-
tion through sudden mesh coarsening generates spurious high-frequency modes which
propagate upstream. If left unfiltered, these spurious oscillations eventually contaminate
the entire solution, particularly after interacting with the boundaries of the computational
domain.

Calculations were performed with successively refined meshes while retaining the same
localized stretch factor of two at the stations S, S,. Figure 2 displays the maximum error
(Lo norm) in the computed vertical velocity component along the horizontal line passing
through the center of the vortex. The superior absolute accuracy of the high-order scheme
(C6) over the standard second-order method (E2) is evident for all values of Ax; considered.
Although the order of accuracy of the sixth-order scheme is diminished due to the sudden
jump in the mesh spacing, extensive calculations presented in Ref. [6], with large but smooth
metric variations, have shown that order of accuracy is preserved on curvilinear meshes. In
order to explore the issue of stability, calculations with the C6F8 scheme were extended to
t = 96. Despite the jumps in grid spacing and the long integration time, no instabilities are
observed.
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FIG. 2. Effect of grid resolution on maximum error in swirl velocity for mesh with sudden jump in grid
spacing.

4.1.2. Effect of Localized Abrupt Grid Skewing

The behavior of compact schemes is examined next for the mesh shown in Fig. 3a,
which exhibits a localized abrupt change in slope of 25° at x = 4. The vortex is convected
from its initial location centered at x = 0, past the slope discontinuity to its final position
x = 8 at t = 8. Results on a relatively coarse mesh (Ax, = Ay, = 0.4), obtained with
schemes E2F8 and C6F8 using RK4 and At = 0.002, are displayed in Figs. 3¢ through 3e.
It should be noted that calculations without the inclusion of a filter (not shown) again result
in the generation of spurious spatial oscillations which appear as the vortex core reaches
the location of sudden mesh skewing and which subsequently contaminate the flow field.
Vorticity magnitude contours show that the compact discretization (in conjunction with
the high-order filter), Fig. 3d, is once again superior to the standard second-order scheme,
Fig. 3c, when compared to the exact solution, Fig. 3b. A more quantitative comparison of

Swirl velocity
0.01F X

(c) E2F8 (d) C6F8

FIG. 3. Performance of compact schemes on mesh with abrupt grid skewing.
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FIG. 4. Effect of grid resolution on maximum error in swirl velocity for mesh with abrupt grid skewing.

the swirl-velocity component along an n-constant coordinate line passing approximately
through the vortex center is presented in Fig. 3e and displays excellent agreement between
the results computed with C6F8 and the theoretical distribution. The behavior of both
schemes for various levels of spatial resolution is given in Fig. 4 in terms of the maximum
error of the computed v-velocity component. Results with C6 on the coarsest mesh are
observed to be more accurate than those obtained with E2 on the finest mesh, which contains

16 times more points.

4.1.3. Sensitivity to Mesh Distortion

As an extreme example of a nonuniform grid, consider the “randomized” mesh of Fig. 5a.
A nominal 50 x 50 uniform mesh is generated in the domain —6 <x <6, —6 <y <6.

y £
5k
0
S5H
-5
_v-velocity
0.010:— j=JL2
0.005}
0.000F 1
F 03
-0.005F - gg:;gns (e)
r E4F6"°
-0.010F | ——- Roe
E i o, Theory
-5 0 5 x

FIG.5. Performance of compact schemes on randomized mesh.
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Interior points are then perturbed by 20% of the nominal spacing in a randomly chosen
direction. Note that several points near the boundaries are left unperturbed to provide a high
degree of metric continuity at the edges of the domain thereby facilitating implementation of
periodic boundary conditions. The resultant mesh, shown in the detail of Fig. 5b, exhibits
rapid and persistent nonsmooth metric variations and may be considered a challenging
problem for spatially implicit schemes. Computations with both the compact C4 and the
explicit E4 scheme were found to be unstable without filtering even at extremely small
time steps. The most likely cause of this instability is the rapid mesh distortion which can
destabilize the computation even in the absence of boundary approximations. Stronger filters
than those employed for the above cases are essential to enforce stability; in this case, the
sixth-order filter F6°3 was employed. In this event, Fig. Sc indicates that the filter becomes
the most dominant aspect of the scheme and the advantage of compact schemes over equal-
order explicit schemes is lost for such randomized distorted meshes. However, even with
this robust filter, the centered schemes are superior to the Roe flux-difference split nominally
third-order upwind-biased scheme. The perturbation velocity contours (Figs. 5d and 5e) also
demonstrate less distortion with the compact scheme. Interestingly, the centered scheme
exhibits a lead error rather than the usually observed lag error. This is likely attributable to
the filter whose symmetry properties are not preserved on nonuniform meshes.

It is important to reiterate that the hierarchy of schemes arranged in terms of formal
accuracy remains unaltered on curvilinear meshes if these are generated in a smoother
fashion than in the previous example. Thus, higher-order compact-difference schemes,
coupled with appropriate high-order low-pass filters, are superior to same-order explicit
and lower-order alternatives, even on meshes where stretching and skewing are significant.
This can be illustrated by considering a mesh generated with the formula

X i — 1A o 1 n
%, j(T) = Xmin + AX, | i — 1) + A, sin(2rw7) sin nym(j — DAY, N igp
| Ly IL -1
(21
() + Ayl (G =1+ A,sin2 ) si nym (i — 1)Ax, N jby
i,j{T) = Ymin ) — sin(2r wt) sin )
" ' Y ' ’ Ly JL—-1
L, L,
Ax,, = s Aya — )
IL —1 JL —

l<i<IL, 1<j<JL,

where /L, JL denote the number of points in the £ and 75 directions, Ly = Xmax — Xmin
and Ly = Ymax — Ymin. For the present case, IL = JL = 30, Xpin = Ymin = —06, Xmax =
Ymax =6, A, =1,A, =2,n, =6 =n, =6, ¢, = ¢, = 0 and, to obtain a stationary grid
at maximum distortion, wt = 1/4. The mesh, displayed in Figs. 6a and 6b, is of relatively
poor quality since the maximum deviation from orthogonality is 81.6 degrees, the ratio of
maximum to minimum Jacobians is 6.5 and the maximum stretch factor (measured as the
ratio of neighboring Jacobians), is 2.3. Starting at + = 0 with initial position x = 0, y = 0,
the vortex is convected through regions of fine but skewed spacing alternating with coarse but
nearly orthogonal local distribution. To highlight the properties of the scheme, a mild filter,
F10°%, is applied to annihilate the odd—even modes observed in the unfiltered calculation.
Figure 6¢ exhibits the v component of velocity at + = 12 along the line j = JL/2. It is
apparent that the compact-difference based schemes are far more accurate than equal-order-
explicit or lower-order schemes. Figures 6d and 6e also show contour plots of perturbation
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FIG. 6. Performance of compact-difference schemes on a highly distorted mesh.

velocity at t = 12 obtained with the C6 and E4 schemes and confirm that the former
preserves the integrity of the vortex to a much greater degree.

4.2. Freestream Preservation and Metric Cancellation
on Stationary 3-D Curvilinear Meshes

The extension of compact schemes to nontrivial 3-D geometries demands that issues of
freestream preservation and metric cancellation be addressed. These errors, which arise in
finite-difference discretizations of governing equations written in strong-conservation form,
can catastrophically destroy the fidelity of both standard and higher-order approaches. In
[6], it was shown that on highly distorted curvilinear 2-D meshes, the compact scheme ex-
hibited very small metric cancellation errors when the metrics were evaluated with the same
finite-difference expressions as those employed for the fluxes. In 2-D curvilinear grids, the
freestream preservation characteristics of the compact scheme are then found to be similar to
that of the standard second-order central difference method [12]. Reference [6] also clearly
showed that the practice of prescribing analytic metrics (when available) on curvilinear
meshes can lead to unacceptable errors and therefore should in general be avoided.

As discussed in Refs. [8—10] for the E2 scheme, the previous straightforward approach
of calculating the metrics, although effective in 2-D, fails to provide metric cancellation for
general 3-D curvilinear meshes. More specifically, consider the metric relations

éx = nZ; — Yeiy
flx = yeze — YeZe (22)
2x = YeZn — YnZe-
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These may be associated with the x-components of surface area vectors. Corresponding
to these is the metric identity /; (Eq. (9)), which must be satisfied numerically to ensure
freestream preservation. Similar relations exist for the other two components of the surface
area vectors. Evaluation of the y and z derivatives in Eq. (22) using explicit or compact
centered schemes does not satisfy the identity /; and therefore grid-induced errors appear
in regions of large grid variation or near singularities. To address this problem for low-order
schemes, Pulliam and Steger [8] introduced a simple averaging procedure while Vinokur [9]
also proposed the use of finite-volume concepts. These approaches, which work very well
for the second-order scheme, are not readily extendable to compact schemes, and in their
present form are not suitable even for explicit higher-order formulations.

An alternate and less known method for enforcing the metric identities was given by
Thomas and Lombard [10]. Instead of introducing weighted averaging or invoking geomet-
rical concepts, they rewrite the metric expressions in Eq. (22), prior to discretization in the
equivalent “conservative” form

£ = (02 — (Ve2)y
e = 0e2)e — Ve2)e (23)
& = (Ve2)y — (s,

with similar relations for the remaining metric terms. This approach was proposed in the
context of lower-order methods, but did not become popular because of the relatively simpler
averaging procedure of Pulliam and Steger. Although Eq. (23) was not envisaged for use
with higher-order or compact-difference-based methods, its “conservative” differential form
suggests its viability for the present purpose and is therefore selected for evaluation with
the present schemes.

In order to examine metric cancellation errors with this new approach, the three-
dimensional curvilinear grid shown in Fig. 7 was generated using the equations

Xi jk(T) = Xmin + AX, |:(i — 1)+ A, sin(Rrwt)

X sin

nxyﬂ(j B ])Ayo sin I’lsz[(k - 1)AZ0
L, L,

Vi jk(T) = Ymin + Ayo[(j — D+ Aysinror)
(24)

X sin

nymw(i—1)Ax, . nymwk—1)Az,
: sin
Ly L,

Zi,jk(T) = Zmin + AZO[(k — 1)+ A, sinCrwrt)

. nzxn(i B I)Axo . nzyn(j - 1)Ayoi|
X Sin sin

L. L,
i=1...IL; j=1...JL; k=1...KL

X

L—1

Z

Ax0= = )
KL -1

Ay, = Az,

Yy .
JL -1
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FIG.7. Three-dimensional wavy mesh.

with the specified parameters /L =JL =KL =21, A, =A,=A,;=1, L,=L, =
L, =4,and ny, =n,; = --- =4 and for this nonmoving mesh case, again vt = 1/4.
Inviscid uniform flow (¢ = u,, v =w = 0) was computed on this wavy grid and marched
in time for 50 steps (At = 0.05) with a mild F10%* filter. The maximum departure of
v, w from their initial zero values is given in Table VII for various schemes and for two
different metric evaluation procedures. When the metrics are computed in the standard
manner (i.e., Eq. (22)), significant errors arise for all spatial discretizations in preserving
the free stream. It should be noted that the error diminishes when a more accurate scheme
is applied. However, the magnitude continues to be unacceptable even for C6. In contrast,
evaluation of the metric relations using Eq. (23) results in a dramatic reduction of metric

cancellation errors for all schemes and guarantees freestream preservation to a suitable
degree.

TABLE VII
Freestream Preservation Errors for 3-D Wavy Mesh

Error (max (v, w))

Standard metrics New metrics

Scheme Eq. (22) Eq. (23)
E2 7.3 x 107! 2.4 x 10712
E4 2.8 x 107! 23 x 10712
Cc4 6.6 x 1072 2.3 x 10712
c6 1.1 x 1072 2.4 x 10712
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FIG. 8. Effect of metric evaluation formulas on vortex preservation in a 3-D wavy mesh.

In order to examine the effects of metric cancellation errors on a nontrivial flow, the
case of a stationary vortex was computed on another 3-D wavy grid. A less distorted mesh,
of which a constant ¢-plane is shown in Fig. 8a, was constructed using Eq. (24) with
the following parameters: /L = JL =31, KL =21,L, =L, =12,L, =4,A, = A, =
A, =04,n, =n,;, =---=4and ot = 1/4. The initial condition is shown in Figs. 8b
and 8f in terms of contours of velocity magnitude and the velocity profile along a j-
constant line. When standard metrics are employed, spurious grid-induced structures appear
(Figs. 8c and 8d) throughout the domain resulting in distortion of the original vortex. The
degradation is more severe for the explicit £4 scheme and again is observed to diminish
with C4. When Eq. (23) is used for the metrics, the initial vortex is preserved by both E4
and C4, as shown in Figs. 8e and 8f for the latter scheme. A summary of the maximum
error in swirl velocity corresponding to Fig. 8f is shown in Table VIII for the different
spatial discretizations and metric evaluation methods. For the fourth-order schemes, an
order of magnitude improvement is observed and even for the highly accurate sixth-order
scheme, the error is reduced by a factor of 4 when the new metric evaluation procedure is
employed.

TABLE VIII
Maximum Error in Swirl Velocity with Different Schemes
and Metric Evaluation Procedures for Vortex on 3-D Wavy Mesh

Scheme Standard metrics New metrics
E2 2.96 x 107 2.45 x 107%
Cc4 6.72 x 107 2.38 x 107%

Cc6 8.21 x 107 2.36 x 107"
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The previous cases clearly demonstrate the importance of proper metric evaluation in
higher-order finite-difference approaches for equations written in strong conservation form.
The meshes were deliberately selected to highlight these issues but are arguably unreal-
istically distorted. However, even more commonly encountered meshes exhibit similarly
gross error if not treated carefully. As an illustration, consider freestream preservation on
the spherical grid shown in Fig. 9. The mesh is generated with uniform Ar, A6, and A¢
distributions in all directions. Table IX lists metric cancellation errors with several schemes
on this relatively benign mesh. Although errors with the standard metrics diminish with
increasing order of accuracy, they are still unacceptable for many computations of interest,
such as in aeroacoustic, receptivity, and transition simulations. Note also that the use of
analytic metrics, employed with C4 for illustration purposes, does not remedy the situation.
The new metrics on the other hand preserve the freestream for all practical purposes. The
simple and inexpensive modification of Eq. (23) is thus an important step in the extension
of higher-order methods to generalized coordinates.

TABLE IX
Freestream Preservation Errors for Spherical Sector

Error (max (v, w))

Standard metric New metrics Analytic
Scheme Eq. (22) Eq. (23) metrics
E2 6.0 x 1072 9.0 x 1071
E4 1.0 x 1073 7.0 x 10713
Cc4 5.0x 10~ 1.4 x 1072 3.56 x 107

c6 2.0 x 1073 3.9 x 107
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It should be noted that following the present work [17] on the adaptation of the metric
form of Thomas and Lombard [10] for use with high-order centered discretizations, Vinokur
and Yee [23] have provided a general analytical proof regarding the freestream preservation
properties of Eq. (23). They also proposed a more complex coordinate-invariant form for
the metric derivatives which was originally given by Thomas and Neier [24].

4.3. Use of Higher-Order Schemes on Deforming and Moving Meshes

For deforming and moving meshes, the GCL identity of Eq. (12) must also be satisfied
to eliminate metric cancellation errors and to ensure freestream preservation. For the time-
integration methods employed in this work (Section 3.3), the time-derivative term in Eq. (1)
is split using chain-rule differentiation as follows:

U)D)e = /DU, + T/, (25)

It should be noted that the above chain-rule differentiation formula does not strictly satisfy
strong conservation in time and might not be suitable for rapidly moving strong shocks,
which are not considered in the present paper. The first term in Eq. (25) involves the inverse
Jacobian, J~!, which is evaluated using the instantaneous values of the grid coordinates in
the standard manner:

1 Xe Ve o &
7 =|x, Yy Znl- (26)
Xe Yoo g

The second term, which includes the time derivative of the inverse Jacobian, requires special
treatment. Rather than computing this term directly from the grid coordinates at various time
levels (either analytically or numerically), we simply invoke the GCL identity (Eq. (12)) to
evaluate (1/J)., i.e.,

(A/D)e = —[EDe + )y + Ee], (27)

where

= —[x. (&) + y: €)) + z: ()]
e = =[x () 4+ ye (By) + 20 (7] (28)
—[x: (&) + Yo (@y) + 2:(E)]

e
|

()
Il

For the case of an analytically prescribed dynamic mesh transformation, the grid speeds
(x7, ¥z, z7) appearing in Eq. (28) are obtained from the corresponding analytic expressions.
An example in which the grid speeds are known analytically corresponds to the case of a
pitching wing when the entire numerical mesh is rotated in a rigid fashion. As the results
in Section 4.3.1 will demonstrate, the use of analytic grid speeds (x;, y;, z;) in Eq. (28)
effectively provides metric cancellation and freestream preservation. Indeed, the use of I
to evaluate the time derivative of the inverse Jacobian compensates for errors introduced in
evaluating the other time metrics. To illustrate this, consider the freestream evaluation of



174 VISBAL AND GAITONDE

the row, R», in the residual, Eq. (17), corresponding to the inviscid x-momentum equation:

Ry = _J{(Poouoo)[étg + uOOéXg + vooéyg + wooéz;] + pé.’(g + (Poouoo)[ﬁtn
+uoof7x,] + Uooﬁyn + wooﬁzn] + pﬁxn + (;Ooouoo)[gz: + Mooéx{ + Uooéy;

A A 1
+ woogz;] + péx + (/Ooouoo)<7) } (29)
The terms may be regrouped as
R, = _J{(poouic + p)ll + PoclhocVoo 2 + PoollooWeo I3 + poouoolél}v (30)

where I; through I, are given in Egs. (9)—(12), respectively. As noted earlier, if Eq. (23)
is employed to evaluate the metrics, identities I}, I, and I3 are satisfied. Consequently,
by utilizing 14 to explicitly evaluate the time derivative of the transformation Jacobian
as in Eq. (27), the last term in Eq. (30) also vanishes, thus extending freestream preser-
vation to deforming meshes. It is important to note that this analysis is independent of
the manner in which the grid speeds x;, y;, and z, are obtained (i.e., either analytically
or numerically). However, the use of an analytic expression for the entire term (1/J),
leads to errors similar to the case of analytic (spatial) metrics as described in Ref. [6].
Since the GCL is only employed to compute the time derivative of the inverse Jacobian,
this value differs from that which might be obtained directly from the time-varying grid
coordinates.

In many practical applications involving deforming meshes (e.g., dynamic aeroelastic
simulations), the grid speeds are not known analytically and must therefore be approximated
to the desired degree of accuracy with the evolving grid coordinates at several time levels.
For this situation, the computed grid speeds are approximated as

xe = [(1+@)x" — (1 +2¢)x" + ¢x"~'1/Ar, (31)

where ¢ =0 or ¢ = % for first- and second-order temporal accuracy, respectively, with
similar approximations for y, and z,. As demonstrated in the next section, second-order
accuracy is found to be suitable, although higher-order approximations are also possible at
the expense of more levels of storage for the mesh.

4.3.1. Dynamically Deforming 2-D Mesh

In order to test the accuracy of the high-order method for a time-varying curvilinear
coordinate transformation, a dynamically deforming “wavy” mesh is first considered. The
grid coordinates are specified analytically by Eq. (21) with the parameters Ax, = Ay, =
04, A, =A,=3,n,=8=n, =4, ¢, =m, ¢, = m/2. The grid deforms harmonically
with a nondimensional frequency w = 1. At the phase of maximum deformation (Fig. 10a),
the mesh has a maximum deviation from orthogonality of approximately 72 degrees and a
ratio of maximum to minimum Jacobian of 3.7.
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TABLE X
Maximum Freestream Preservation Error §vy,, = max(|;—|)
on Dynamically Deforming 2-D Mesh

Scheme Time-marching Xey Vo SVUmax

E2 RK4 Eq. (32) 3.8 x 1071
C4F8 RK4 Eq. (32) 6.6 x 10713
C6F10 RK4 Eq. (32) 5.0x 10713
C6F10 RK4 Eq. (31),¢ =0 2.7 x 1071
CO6F10 RK4 Eq. B, ¢ =1/2 1.6 x 10713
E2 B-W Eq. (32) 2.6 x 10714
CO6F10 B-W Eq. (32) 23 x 1071

For this analytically prescribed deforming mesh, the grid speeds can be obtained from
Eq. (21) by straightforward differentiation giving

x i — 1Ay, [ Py
X; = 2mwA, Ax, cos(2mwt) sin nmt(j — DAY, N i
L IL -1

y

(32)

7 — 1)Ax, Py
Vr = 2nwA, Ay, cos(2rwr) sin(n"n(l I JAx + J£¢i 1).

For the parameters specified above, the grid speeds attain a relatively large maximum
nondimensional value (X;)max = (Vr)max = 3.77.

To evaluate the freestream preservation properties of the present formulation, inviscid
uniform flow (4 = u.., v = 0) was computed on this dynamically deforming wavy mesh.
The solution was advanced in time until T = 1.25 using a time-step size of At = 0.002. At
this instant, the mesh had undergone 1.25 deformation cycles. Results for the maximum er-
ror in v-velocity are summarized in Table X. These results show that the metric cancellation
errors on this highly distorted and rapidly moving mesh are very small for both the second-
and high-order compact discretizations, as well as for both time-marching schemes. Further-
more, as expected, freestream preservation is practically achieved whether the grid speeds
are specified analytically or are calculated using first- or second-order approximations.

In order to examine the accuracy of the high-order method on dynamic meshes, the
vortex convection test is computed on the deforming grid given by Eq. (2) (Fig. 10a).
Three different levels of resolution are used, corresponding to Ax, = Ay, = 0.6, 0.4, 0.2.
In all calculations, the vortex is convected from x = 0 to x = 8.25 using the RK4 time-
integration scheme with At = 0.002, which provides 500 steps per grid-oscillation cycle
and is sufficiently small to provide essentially time-step-size independent results on the
grids considered. During the time of the calculations, the mesh undergoes 8.25 cycles of
the prescribed dynamic deformation (Eq. (21), @ = 1). The grid speeds x, y; are specified
analytically through Eq. (32). Results on the medium mesh using the high-order scheme
C6F10 (Fig. 10b) and the standard second-order method (Fig. 10c) are compared with
the exact solution (Fig. 10d) in terms of contours of vorticity magnitude. It is apparent
that on this relatively coarse deforming mesh, the high-order approach is capable of con-
vecting the vortex with excellent fidelity. By contrast, the second-order scheme exhibits
significant dissipation and distortion of the original vortex. A more quantitative comparison
is shown in Fig. 11 using the v velocity component along the n = constant line passing
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FIG. 10. Vortex advection on dynamic 2-D mesh.

approximately through the center of the vortex. The superior behavior of the C6F10 scheme
compared to the E2 approach is clearly retained even under the imposed severe dynamic grid

distortion.

The grid-convergence properties of the schemes are shown in Fig. 12, which displays the
maximum error (L., norm) in the computed swirl velocity magnitude along the mesh line
through the center of the vortex. In terms of absolute error, these results demonstrate that
significant improvements can be achieved with the high-order approach in dynamic mesh

simulations.
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FIG. 11. Effect of spatial discretization for vortex advection on dynamic 2-D mesh.
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FIG. 12. Effect of grid resolution on maximum error in swirl velocity for dynamic 2-D mesh.

The vortex-advection test case was also employed to assess the impact of grid-speed
evaluation method on solution accuracy. For this purpose, the flow was recomputed using
numerically determined values for x, y,;. The error in the computed swirl velocity mag-
nitude within the vortex is shown in Fig. 13 for the C6F10-RK4 scheme and for different
approaches of evaluating the grid speeds, including analytic (Eq. (32)) as well as first-
and second-order approximations. When a first-order approximation (Eq. (31), ¢ = 0) is
employed for x;, y;, minor differences (in terms of the error plot) are observed in com-
parison with the results obtained with analytic grid speeds. However, these discrepancies
are very small and do not yield appreciable differences in swirl velocity. The error curves
corresponding to second-order (Eq. (31), ¢ = %) and analytic grid speeds are found to be
essentially the same. Therefore, higher-order approximations for computing the grid speeds
were not deemed necessary.

Finally, the effect of time-integration scheme was evaluated for the vortex convection
simulation on the dynamically deforming mesh. Calculations were performed on the finest
level of spatial resolution (Ax, = Ay, = 0.2) using the C6F 10 scheme and both the explicit
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FIG. 13. Effect of grid speed evaluation procedure on swirl velocity error for vortex advection on dynamic
2-D mesh.
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FIG. 14. Effect of time-integration scheme for vortex advection on dynamic 2-D mesh.

and implicit time-marching methods. The time-step size was increased to At = 0.01 which
corresponds to only 100 steps per cycle of deformation of the mesh. As shown in Fig. 14,
results obtained with the first-order Beam—Warming scheme (in conjunction with first-order
grid speeds) were found to be in poor agreement with the exact solution. The computed swirl
velocity remained essentially unchanged when analytic grid speeds were specified along
with the first-order time-marching implicit method (not shown). This indicates that the poor
performance of the first-order Beam—Warming method is not attributable to the grid-speed
evaluation procedure but rather to the lower order of accuracy of the time-marching scheme.
The swirl velocity computed with the second-order Beam—Warming scheme (with second-
order numerical grid speeds) is found to be in excellent agreement with the corresponding
results for RK4 (with analytic grid speeds), as well as with the exact solution. Based on
the good characteristics of the second-order subiterative Beam—Warming method for this
relatively large time-step size, higher-order implicit time-marching approaches were not
pursued. It should also be noted that further improvements in time accuracy could be
achieved within the context of the present iterative approach by replacing the physical time-
derivative, appearing on the right-hand-side of Eq. (19), with a higher-order approximation
(at the expense, of course, of additional levels of storage for the deforming grid coordinates
and the dependent variables).

4.3.2. Dynamically Deforming 3-D Mesh

In order to test the behavior of the high-order scheme for 3-D dynamic curvilinear grids,
a deforming wavy mesh (similar to that in Fig. 7) was constructed using Eq. (24) with the
specified parameters IL = JL =KL =31,A, =A, =A, =15,L, =L, =L, =12,
andn,, = ny, = --- = 4, and frequency of oscillation @ = 1.0. The grid speeds (x, y;, z-)
were obtained analytically by direct differentiation of Eq. (24). For instance,

nym(j — 1Ay, sin nyw(k —1)Az,

Xy = 2mwAAx, cos(Rmwt) sin T 2
y Z

(33)

With the parameters prescribed above, the maximum (nondimensional) speed attained by
the grid was 3.77.
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TABLE XI
Maximum Freestream Preservation Error max(| 7|, |71
on Dynamically Deforming 3-D Mesh

Standard metrics New metrics

Scheme Eq. (22) Eq. (23)
C4F8 1.1 x 1072 8.2 x 107"
C6F10 3.8x 1073 6.7 x 1071

In order to test for freestream preservation, uniform flow (4 = u.,, v = w = 0) was com-
puted on this dynamic mesh. The solution was integrated in time with the RK4 method and
At = 0.002 up to the phase of maximum distortion of the grid (r = 0.25). The maximum
departure of v, w from their initial zero values is given in Table XI for the C4F8 and C6F10
schemes. These results indicate that for this severely distorting 3-D mesh, the high-order
compact schemes exhibit freestream preservation when the spatial metrics are computed
using Eq. (23), and when the time-derivative of the Jacobian is expressed in terms of the
GCL identity (Eq. (27)). By contrast, if standard metrics are employed (Eq. (22)), signifi-
cant metric cancellation errors appear that would invalidate an actual flow solution on this
deforming grid.

To evaluate the performance of the high-order approach for a nontrivial flow on the 3-D
dynamic mesh, the case of a stationary columnar vortex was considered with the axis
of the vortex placed along z = 0. Inviscid calculations were performed with the E2 and
C6 schemes using the RK4 method and a time step At = 0.002. A cross section of the
vortex on a { = constant plane at = 3.25 is shown in Fig. 15a. At this instant, the grid
has already experienced more than three cycles of the imposed oscillation with frequency
o = 1. As the contours of velocity magnitude indicate, despite the significant unsteady mesh
deformations, the high-order method is capable of preserving the axisymmetric character
of the vortex even on this relatively coarse discretization (approximately 10 points across
the vortex). A comparison of the computed and exact solutions is shown in Fig. 15b in
terms of the v component of velocity. The C6F 10 results are observed to be in excellent
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b) Swirl velocity distribution

a) Contours of velocity magnitude on
(=constant plane

FIG. 15. Stationary vortex preservation on dynamically deforming 3-D mesh.
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agreement with the theoretical answer. This case demonstrates the advantage of the high-
order methodology over standard low-order approaches even for 3-D applications in which
the mesh is subjected to severe dynamic deformation.

4.4. Application to Flow over a Pitching Airfoil

The performance of this newly developed high-order solver for dynamic meshes is demon-
strated in this section for the case of viscous laminar flow past a rapidly pitching airfoil.
Calculations were performed for a NACA 0012 airfoil pitching at a nominally constant
rate from zero incidence to a high angle of attack past the onset of dynamic stall [25]. The
pivot axis was located at the airfoil quarter chord. The freestream Mach number and chord
Reynolds number were 0.1 and 2.0 x 10*, respectively. The airfoil instantaneous pitch rate
was given according to the expression [25]

Q(1) = Q,(1 — e7*07/%), (34)

where 2, = 0.2 denotes the nondimensional pitch rate (based on airfoil chord and u ), and
7, = 0.5 corresponds to the time interval in which the airfoil accelerates to its final angular
rate starting from rest.

Computations were performed with the implicit time-marching algorithm since the ex-
plicit method became impractical due to the fine mesh spacing employed next to the airfoil
surface and around the trailing edge. In all cases, a time step At = 0.001 was prescribed
along with three subiterations. Results were obtained with the standard second-order and
the sixth-order compact formulations. Following Ref. [25], these calculations were first
performed employing a rotating rigid grid attached to the airfoil (Fig. 16a). With this ap-
proach, the instantaneous grid coordinates (x, y) and grid speeds (x;, y;) can be computed
analytically from the initial mesh at zero angle of attack and the prescribed airfoil motion.
Although the analytic value of the time derivative of the Jacobian vanishes for this rigid
mesh, Eq. (27) was retained to compute (1/J) in order to avoid metric cancellation errors.
Vorticity contours are displayed in Figs. 16b—16d corresponding to 7 = 2.25 and an angle
of attack of 24.5 degrees. By this instant, the formation of the leading-edge dynamic stall
vortex is apparent. The results obtained with the C6 scheme on a 203 x 51 mesh (Fig. 16b)
exhibit, in addition to the leading-edge vortex, the formation of several shear-layer vortical
structures, as well as induced secondary separation regions underneath. By contrast, on the
same mesh, the second-order method fails to properly capture these shear-layer structures
(Fig. 16¢) even when the spatial resolution above the airfoil upper surface is doubled in
both coordinate directions (Fig. 16d).

Pitching airfoil simulations were also performed with the high-order scheme for the more
demanding situation in which the computational mesh is deformed in order to accommodate
the airfoil pitching motion (Fig. 17a). The mesh was evolved according to the expressions

xi’fjl = x;fj + 8x;
Y =+ i
Sxij = 0xi1Gij, 8yij =8yi1Gi; (35)
Gij=1-3g;+2g,;

Gij = Sij[Simer 1= J =< jmaxs
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vorticity contours

shear-layer vortices

a) rotating rigid grid b) C6, 203 x 51 mesh

dynamic siall vortex

¢) E2, 203 x 51 mesh d) E2, 260 x 101 mesh

FIG. 16. Computation of flow past a pitching airfoil using a rotating rigid mesh.

where 8x; 1, 8y;1 denote the coordinate changes on the airfoil surface, s is the arc-length
along the £ = constant lines, and jy.x is the n-location in the farfield beyond which the
mesh remains undeformed. The grid speeds were computed numerically with the second-
order, three-point backward approximation of Eq. (31). Despite the differences between the
grids of Figs. 16a and 17a, as well as the distortions induced near the airfoil surface for

a) Deforming grid b) C6 203 x 51

FIG. 17. Computation of flow past a pitching airfoil using a deforming mesh.
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the deforming mesh, the vorticity contours obtained with both moving mesh approaches are
found to be in good agreement (see Figs. 16b and 17b). This example serves to illustrate
the versatility and robustness of the high-order methodology for moving body simulations.

4.5. Application to Boundary-Layer Flow over a Flexible Surface

The last case considered for demonstration of the high-order, dynamic-mesh technique
comprises the simulation of the aeroelastic interaction arising from viscous laminar flow
over a flexible surface. This problem is closely related to the classic panel flutter phe-
nomenon [26], as well as to boundary-layer flow over compliant surfaces [27]. A schematic
of the configuration considered is shown in Fig. 18a. The freestream Mach number and
Reynolds number (based on panel length, L) were 0.9 and 1.0 x 10°, respectively. The
computed boundary-layer thickness at the leading-edge of the flexible panel was
approximately 6 = 0.04L. The pressure in the cavity underneath the flexible panel was
assumed to be fixed at the freestream value p,. The flow field was computed using the sixth-
order scheme (C6) and the second-order, implicit Beam—Warming method (with A7 = 0.01
and four subiterations).

In the present aeroelastic application, the shape of the portion of the lower boundary
corresponding to the deforming panel is not known a priori as a function of time and must

y Panel deflection
0
boundary layer .0.001F
X
! e
flexible panel 0.002+
st . ; L oXIL
L 0.003——% E 1
a) Flexible panel configuration b) Instantaneous panel deflection

¢) Contours of instantaneous pressure d) Instantaneous vorticity contours
above vibrating panel

FIG. 18. Boundary-layer flow over a flexible panel.
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be obtained as part of the solution based on the panel structural response. This response is
computed here by solving the (nonlinear) von Karman plate equations, which are required
when the magnitudes of the deflections are of the order of the panel thickness. Detailed
descriptions of the structural equations, their numerical solution procedure, and the fluid-
structural coupling are provided in Ref. [28]. At each subiteration of the implicit time-
marching method, the shape of the deforming panel is updated by the structural solver.
Based on the new boundary coordinates, the fluid dynamic mesh is evolved by propagating
the panel deformations into the entire field using a blending procedure similar to that of
Eq. (35). This subiterative approach effectively eliminates lag effects between the fluid and
structural modules.

The aeroelastic simulation is started by specifying as the initial condition the computed
steady boundary-layer solution over arigid surface. In order to initiate the fluid/structure in-
teraction, a small vertical velocity in the first-mode is imparted to the panel [28]. Following
initial transients, a limit-cycle-oscillation with an approximate nondimensional frequency
St = fL/usw = 1.62 was achieved by the combined fluid/structural system. A representa-
tive plot of the instantaneous panel deflection is shown in Fig. 18b. From this and many other
instantaneous realizations of the panel shape (not shown), it became apparent that the panel
dynamics comprises a first-mode mean downward deflection upon which a high-mode,
high-frequency vertical fluctuation is superimposed. These high-frequency fluctuations re-
sult in a significant acoustic radiation pattern above the vibrating panel, shown in Fig. 18c
in terms of a snapshot of the instantaneous pressure. Corresponding contours of vorticity
are shown in Fig. 18d, with an enlarged scale (by a factor of 8) in the y-direction for the
purpose of clarity. Vorticity waves are clearly visible in the boundary layer and appear to
roll up and interact with the wall resulting in the formation of secondary incipient separa-
tion regions. This aeroelastic computation points out the potential of the present approach
for fluid/structure simulations requiring DNS/LES representations of turbulence for which
high-order spatial discretizations on moving meshes are necessary.

5. CONCLUSIONS

Several issues have been addressed relating to the use of high-order compact-difference
schemes on stretched, curvilinear, and moving/deforming meshes. It has been shown that
on stretched and skewed meshes, the discriminating low-pass filtering component is crucial
to maintaining the stability and retaining the superior accuracy properties of the higher-
order schemes. A “conservative” form of spatial metric evaluation procedure, originally
proposed in the context of lower-order methods, has been successfully adopted to ensure
that uniform fields are preserved even on highly distorted three-dimensional meshes. This
ensures that metric cancellation errors, which have the potential to degrade the accuracy
of the solution, are minimized for practical calculations. For moving and dynamically
deforming meshes, a procedure has been developed to enforce the geometric conservation
law regardless of whether grid speeds are computed analytically or numerically. Based
on several test cases performed on highly dynamic meshes, the higher-order approach has
been shown to be superior to lower-order methods. These procedures extend the realm
of application of the high-order techniques as demonstrated by application to flow over a
rapidly pitching airfoil, as well as to limit-cycle-oscillation phenomena arising from viscous
flow over a flexible panel. Although these techniques have been developed and demonstrated
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fo

r compact methods applied to the Navier—Stokes equations, they are equally applicable to

other higher-order or optimized finite-difference schemes and to other sets of conservation
laws.
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